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T. SUMMARY

This report describes the operation, maintenance and research activities at

the Norwegian Seismic Array (NORSAR) for the period 1 April 1981 to 30 September
1981.

The performance of the NORSAR online detection processor system has decreased
compared to the previous period; the DP uptime for this period is 89% The

Special Processing System (SPS) caused most of the downtime the first half of
the period; in the last half period the main computer (360/40) caused most of

the downtime.

A total of 1642 events were reported in this period, giving a daily average
of 9 events. The number of reported events per month varies from 333 in April to

210 in July.

There have been some major breakdowns on some of the communications lines in

this period, especially the NORESS system has been affected.

The most-used application programs are now converted to the new standards, or

ncew programs have been developed. Data bases on disk both for instrument and

bulletin data are being built up.

The research activity is briefly described in Section VI. The first subsection
discusses constrained inversion for sources of finite extent. Subsection 2

1s a work to devise an optimal sensor layout for a prototype regional seismic
array. Subsection 3 describes an attempt to map seismically the deep structure
beneath Iceland. Sections 4 and 5 deal with mantle heterogeneities beneath
Fennoscandia and Eastern Europe. Section 6 describes a study on signal detection
using P-wave envelope repfesentation. Section 7 is an investigation of signal
focusing effects at NORSAR for events near the Caspian Sea. Section 8 describes
a three-dimensional ray-tracing system and the last section discusses a method

(AR-method) for measurement of group velocities of seismic surface waves.
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1I. OPERATION OF ALL SYSTEMS
II.1 Detection Processor (DP) Operation

There have been 191 breaks in the otherwise continuous operation of the NORSAR
online system within the current 6-month reporting interval. The SPS has shown

a remarkably good performance since the middle of July and has had just four
stops in the last 24 months. After a fire in the 360 computer used in DP online
on 10 June, the other 360 computer 1s being used for DP processing. As can be
seen from Table II.1.1 this computer is not as stable as the one used before.

The uptime percentage for the period is 89.0 as compared to 91.2 for the previous

period.
Fig. II.1.1 and the accompanying Table TI.1l.1l both show the daily DP downtime
for the days between 1 April 1981 and 30 September 1981. The monthly recording

times and percentages are given in Table I1I.1.2.

The breaks can be grouped as follows:

a) SPS malfunction 123
b) Error on the multiplexor charnel 0
c) Stops related to possible program errors 1
a) Maintenance stops 9
e) Power jumps and breaks 10
f) Hardware problems 45

e) Magnetic tape and disk drive problems
h) Stops related to system operation

i) TOD error stops
The total downtime for the period was 482 hours and 35 minutes. The mean-time-

between-failures (MTBF) was 0.9 days as compared with 0.8 days for the previous
period.

J. Torstveit
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“Month  DP DP No. of No. of DP

Uptime Uptime DP Breaks Days with MTBF*

s (hrs) (%) Breaks (days)
Apr 673.53 93.6 32 19 0.9
May 628.19 84.4 35 18 0.7
Jun 575.72 80.0 40 24 0.6
Jul 683.15 91.8 35 21 0.8
Aug 652.80 87.7 30 22 0.9
Sep 695.45 96.6 19 17 1.5
__3908.84 89.0 191 121 0.9

*Mean-time-between-failures = (Total uptime/No. of up intervals)
TABLE TI1.1.2

Online System Performance
1 April - 30 September 1981

I1.2 Event Processor Operation

In Table II.2.1 some monthly statistics of the Event Processor operation are

given:

L Teleseismic Core Phases Sum Daily 4
Apr B1 264 69 333 11.1
May 81 264 60 124 10.5
Jun 81 243 42 285 9.5
Jul 81 133 77 210 6.8
Aug 81 149 65 214 6.9

_Sep 81 215 61 276 9.2

o 1268 374 1642 9.0

TABLE II.2.1

B. Kr. Hokland

3
3
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I1.3 NORSAR Data Processing Center (NDPC) Operation
Data Center

During this period all jobs except for DP were run on the new computers;

there is no job shop activity, as everyone runs their own jobs from terminals.

A fire in one of the 360 computers on 10 June put that computer permanently
out of operation, and the remaining programs that still were dependent on
the 360 had to be converted for running on the 4341 computer. It is still
necessary for one person to be present in the computer hall to look after

the plotters and printers and to mount tapes.

Je« Torstveit

11.4 Array Communication

Table II.4.1 reflects the performance of the communications system throughout

the reporting period.

In addtion to ordinary irregularities in the communication system, the table
also reflects other prominent conditions, such as:

- CIV power failure (high voltage and ripple)

- Line switching between the SPS and the Modcomp processor

- Maintenance visits

- Tests from NDPC

- Cable damage.

In April O1B (NORESS) was frequently used in Modcomp test connection, also
0l1A was used. 06C was badly affected by a faulty rectifier.

In May OlA and 02C were used for Modcomp tests. 06C was affected by faulty

operating rectifier in the CIV. 02C I1CW errors observed, but error rate low.

In June 0lA, 02C and 03C were used for Modcomp test purposes. 01B (NORESS)
and 06C badly affected by cable damage after lightning. O01B (Asmarka) back
in operation (30 June), as O1B (NORESS) still affected by cable repair work.




-

In July most subarrays were affected one way or another: 0lA by cable work

and Modcomp test; O1B (NORESS) by formerly reported cable damage; O01B (Arsmarka)
loss of data (30 July) Probably cable problem; 02B problems due to power failure;
02C. Spikes on data were reported by data analysts. Errors in ICW's now changed
to ODW's (24.7). NTA Lillehammer and Lillestr¢m engaged (29.7). Also the

NORSAR field maintenance people visited 02C in connection with the spike

problem; 03C was affected by cable work between Rena and the SA, and Hamar-

Rena; 06C. NTA Hamar continued with cable repair along the cable route after

lightning damage.

In August 0lA was used in Modcomp tests. 02C ODW's still infested with errors,
causing data spikes (errors changed to ODW 24 July) after NTA engagement.
06C cable repair finished by end of the month.

In September between the 17th and 24th, 01B was affected by a faulty 'pupin'
coil in a cable. 02B was affected by three different faults: A broken cable,
faulty pupin coils in a ground cable, faulty pupin coils in an air cable. On
17 September the EPU power supply was replaced in the 02C CIV. High outage
figure (11.4%) has also connection with frequent interruptions due to tests

and initiatives to solve the problem.

Table 11.4.2 indicates distribution of outages with respect to the individual
subarrays. The table also reflects (by asterisks) weeks when some or all

subarrays have been affected simultaneously.

I1.5 The ARPA Subnetwork
We had incidents in April and September with Loss of Carrier and reduced line

quality, but for the remaining months the circuit was quite reliable.
The problems we have faced can be summarized as follows:
Scheduled line break on 12 April. On 27 April 'Carrier Lose'. Pirmasens/Germany

reported Loss of Carrier from USA. NCC requested loop tests/modem status on

29 April. Status indicators 'Carrier Loss' and 'Marginal Circuit' initiated




_10_
occasionally in May. Loss of Carrier 11 July was corrected in Oslo.
In September the line was down between the 3rd and the 4th due to an irregu-
larity in the USA. The codex modem was tested upon NCC request (40 minutes)

in local mode on 22 September. No errors were observed. 'Carrier Loss' observed

25 September. NTA was informed.

II.6 The Terminal Interface Message Processor (TIP)

Apart from a few restarts after power outages 11 & 15 July and 8 Sep, and
a faulty Host 3 interface card (10-13 August), reliable performance.

TIP port connections - no change since last report.

0.A. Hansen
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Week/ Subarray/per cent outage

Year 0lA 01B 02B 02C 03C 04C 06C
14/81 2.3 88.7 - - - - 92.1
15 - 100.0 - - - - 100.0
16 1.4 100.0 0.7 1.1 0.9 0.9 74.3
17 15.5 42.8 - 0.2 2.8 - 79.8
18 0.2 6.6 0.2 0.2 0.7 0.2 15.3
19 - 9.1 - 35.0 - - 1.5
20 - 9.6 - 100.0 - - 9.1
21 - 24,2 - 71.4 - - 25.1
22 0.5 - - 86.9 - 2.4 -

23 - 85.9 1.8 3.0 1.4 - 47.0
24 - 100.0 0.4 37.5 - - 100.0
25 - 100.0 - 0.7 4.0 2.0 100.0
26 51.2 100.0 - 0.5 67.8 19.0 100.0
27 12,3 21.6 0.4 1.3 100.0 1.5 100.0
28 - 0.6 - 0.4 100.0 - 100.0
29 0.4 58.1 - - 85.7 - 100.0
30 - 89.1 22.3 30.5 0.2 1.1 100.0
31 - 71.4 61.8 17.1 - 0.2 100.0
32 46.3 0.5 - 14,6 0.4 0.7 100.0
33 33.5 0.2 - 11.2 0.2 0.2 7.4
34 - - - 2.1 - - 43.6
35 0.9 - 0.2 0.5 0.9 0.2 7.3
36 - - - 11.7 - - -

37 15.5 0.3 0.1 7.8 0.4 0.9 -

38 - 36.7 - 9.0 - 2.4 -

39 - 33.4 1.5 13.7 0.4 1.2 -

40 - - 85.7 13.9 - - -

TABLE II.4.2




- 13 -

IIT. IMPROVEMENTS AND MODIFICATIONS
III.1 NORSAR On-line System

Several problems with the new operating system, VM/SP, on IBM 4331 have

been overcome, and detection processing using subarray 02C has been tested.
During weekend testing of the new system, we experienced 43X CPU load

on 4331, with an uptime of 99.99995Z. The small loss of data is due to a few
single time-outs on the communication controller 2701 between MODCOMP and
4331. We are working with this timing problem to achieve no loss of data

as long as the computers are operational. The operational uptime of the
computers 1s determined mostly by AC power uptime. Unpredicted power breaks
have caused a few hardware problems on the IBM computer. Whenever a hardware
error is detected, the typical repair time is 2-4 hours, including any wait-

time on normal working days.

The new IBM 3370 disks had some initial problems with 'disk crash', but these
problems are now, according to IBM, eliminated. We have therefore an expected
uptime of 99.99, excluding power breaks. Recording of data will be performed
by the 4341 computer, where data from the last 24 hours of processing is
retrieved from shared disks and written to magnetic tape. A major improvement
here will be to use the higher 6250 BPI density tapes, with capacity of 16
hours of NORSAR data on one single reel. An improvement of NORSAR's tape
recording equipment is now crucial, since the old IBM tape drives are getting

more and more problematic to use.

I11.2 NORSAR Event Processor

The processing of EPX records on the detection log tapes 18 heavily automated
using the AUTOEP program. The analysts have found it most practical to pro-
duce offline plots, where the events to plot are automatically selected

by criteria in AUTOEP. The plots are then reviewed and the analysts h.c¢ now
a new rerun program using high rate tape input. Processing time is small and
repeated processings are easily performed by use of disk files. With the

new online system operational, the EPX data will be retrieved from shared
disk, and reruns may also be performed rapidly having 24 hours of the

latest online data on disk. Refinements of the processing will be developed

using the graphic display terminals.

-
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II1.3 Program Developments

All of the mostly used application prograns are converted to the new
standards, and several new programs have been developed. It is typical

for program development time and testing using the new computers that many

find it quicker to develop a new program rather than look for the old card-
deck and use that. Since test time is significantly decreased, the programs are
more rapidly getting reliable status, more data may be analyzed and the results
are getting better. We are building up data bases on disk both for instrument
data and bulletin data. A file in the VM/CMS system is identified by name and
type. We have now a system where instrument data files have the basic informa-
tion in the file identification, i.e., a file containing NORSAR data from

1981, DOY 256, start time 12.56.23 will be identified by file name 'NA081256'
and file type '125623'. In addition we may put a record in the beginning of

the file describing the data, such as a bulletin card for an event. Several
programs are developed using such data files. Moreover, there are new programs
for bulletin sorting, map plotting, data plotting, and all programs are online
available to everybody.

J. Fyen

I11.4 Improvements and Modifications

The changes of the array stations in the period 1 April to 31 October 1981
are given in Table IIT.4.2. The '0ld NORESS' was disconnected due to dif-
ficulties in restoring the communication line after thunderstorm damage

in the beginning of June, and the original subarray configuration 01B was
reconnected as of 30 June 198l. The attenuated (-30 dB) channel 01A04 was
damaged by lightning 23 June and has been down from that date. The

analog channel 06002 has been down since 7 September due to fault on the
Helicorder. Table III.4.1 gives the cross reference of the NORESS channels
after a new numbering of the stations was introduced as of 30 October,
refer Fig. III.4.1. The data signal before filtering of eight of these
channels are multiplexed on a new telephone line and sent as analog data
to NDPC for analog~to-digital conversion and processing in the Modcomp

computer.
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NORESS Previous 06C New Analog
Seismometer 06C(new)/ SLEM channel 1
Station No. 01B(ol1d) channels no. at
(Ref. Fig. NORESS NDPC
111.4.1) channels
1 06001 1
2 0602 02 1
3 866066 D\Rob 2
4 06C03 3
5 06006 4
6 06004 03 6
7 06005 5
8 01B03 04 7
9 01BO4 05 8 '
10 01801 01 !
11 01BOS 06 ,
12 01B02 \
!

Table I11.4.1

NORESS seismometer and channel numbering as of 30 October 1981
with cross reference to previous numbering.

Two Kinemetrics PDR-2 digital 6-channel field systems were acquired last
July and have been used for noise measurements at several places in Norway
and Finland. Also a Kinemetrics CCS-1 Compuseis communication system has
been received and installed at NDPC for playback of PDR-2 cassettes and

possible communication interface for the PDR-2

A.Kr. Nilsen
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Y% - 'OLD' NORESS

500M Y | NEW STATIONS

L

Fig. III.4.1 NORESS seismometer station numbering from 30 October 1981.
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Iv. FIELD MAINTENANCE ACTIVITY

Parts of array monitoring have been somewhat deteriorated in this period
after the interactive read/write program (ARSTAT) on array status file (ASF)
located on the DP shared disk was interrupted by removing the IBM 2260
terminal and its controller. Temporary programs for read/write on ASF are
now in use. Permanent programs will be implemented in the new DP program
package. As in previous periods the array field instrumentation performance
has been satisfactory, but thunder storms have also this summer caused damage
on electronics and communication lines. Most of the well head vaults' wooden
covers In the A- and B-ring have been replaced during the summer, and much
work has been done with subarray 02B extension; at least four seismometer

stations will be set in operation this year.

Maintenance Visits

Table IV.1l gives the number of visits to the NORSAR subarrays. The average
number of visits to each subarray is 5.9, which equals the visits for the

last reporting period.

Subarrays 0l1A 01B 02B 02C 03C 04C_ 06C/NORESS Total
No. of Visits 8 11 3 2 4 2 11 41
TABLE 1IV.1

Number of visits to the NORSAR subarrays including NORESS
in the period 1 April-30 October 1981
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Preventive Maintenance Projects

The preventive maintenance work of the NORSAR array instrumentation is

listed in Table IV.2. The adjustments are corrections of characteristics

within the tolerance limits before they drift outside the tolerance limits.

Unit Action No. of
Actions
Seismometer MP adjust (in field) 7
Line Termination Adjustment of channel gain (SP) 7
Amplifier =" (LP) 3
e of DC offset (sp) 13
Emergency Power Battery and charger check 8
including refill of water
Cleaning of CTV 4

TABLE 1IV.2

Preventive maintenance work in the period

1 April - 30 September 1981
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The corrective maintenance of the NORSAR array instrumentation, which covers

the required adjustments and replacements, is given in Table IV.3.

Unit Characteristics SP LP
Repl. Adj. Repl. Adj.
Seismometer FP (in field) 2
MP (in field) 7
MP/FP (at NDPC) 40
Damping 1
RCD 4
MP lamps 3
Seismometer Ampl. Gain 1
RA/S, Ithaco Protection card 4
JC-box 4
Line Termination Gain 8
Amplifier DC offset 2
Miscellaneous 1
SLEM Test generators 2 2
EPU 1
Power, Charger/ Time relay 2
Rectifier Power supply for MP Lamps 3
Replacement of 13
WHV wooden cover
Other constructions 6

TABLE 1IV.3

Total number of required adjustments and replacements of NORSAR field

equipment in the period 1 April - 30 September 1981.




>
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Power Breaks, Cable Breakages, Communications Faults

One power break required action of the field crew, that is, assistance to
the local power company. Six SP cables were repaired, and communication

faults were corrected six times by our field crew.

Array Status

There is little change in the status of the array instrumentation compared
with previous periods. As of 30 September 1981 five channels had out-of-
tolerance conditions (01A04; 01B04,05; 03C06; 06006). Channels with nonstandard

conditions are:

01A 02,03 NS and EW horizontal SP
06C 01-06 NORESS

Four channels have 8 Hz filters (standard 4.75 Hz): 01A06, 02B06, 03C06 and
04 C06.,

A.K. Nilsen
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ABBREVIATIONS

Central Terminal Vault

Direct current

Detection Processor

External Power Unit

East-West

Free period

Long period

Mass position

NORSAR Data Processing Center

NORSAR Experimental Small-Aperture Subarray
North-South

Remote centering device

Seismic short and long period electronics module
Short period
Well Head Vault
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VI. SUMMARY OF TECHNLICAL REPORTS/PAPERS PREPARED

VI.1l Constrained inversion for sources of finite extent

In the previous Semiannual Summary we reported on the representation of
selsmic response in terms of 20 source parameters which are related

to components of the moment tensors, and which are also related to the
parameters of finite fault models. The usual representation in terms

of 6 components of the zero degree moment tensor is adequate for point
sources at given location. For point sources at unknown location, a

10 parameter representation (including first degree moments) is neces-
sary and adequate, and the location may be determined (Dziewonski et al,
1981). For sufficiently extended sources, the 20 parameter representation
(including second degree moments) 1s necessary; from an investigation of
clagsical Haskell and Savage type of fault models it is estimated that
for sources with Mg>6, the relative contribution of second degree moments
may be of the order of 10Z or more, even in long-period seismograms. The
representation is adequate as long as source rise time and spatial

extent are smaller than seismic wave period and wave length.

Parameters related to second degree moments can be interpreted in terms

of source rise time, orientation and spatial extent, and average rupture
velocity. Orientation of the source region can also be inferred, in part,
from the zero degree moments. Thus, solutions for the different source
parameters should be mutually consistent. Furthermore, values for some

of the parameters should be positive or, more specifically, be in a range
of 'acceptable' values dictated by our conception of the mechanism of
faulting. Previously we reported that not all of the above criteria were
fulfilled by the results of an inversion of SRO data from a deep event

in the Ball Sea. Thus, it appears necessary to impose (generally non-
linear) constraints on the solution. We have now obtained the contraints

in a linearized form, to be included in the inversion procedure. Moreover,
since the constraints are precisely those appearing as a priori assumptions
in the conventional methods of source analysis, it is also possible to in-
vestigate the impact of these assumptions. Table VI.1l.1 and Fig. VI.1l.2
summarize a comparison of results of constrained and unconstrained inversion
for the Balli Sea event. Case number 1 in this table assumes a point source,

and no constraints are necessary. Case number 3 assumes a plane fault,
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which can be represented by just one double couple. Although the solution for
this case seems 'reasonable' (partly because of the constraints so imposed),
it should be noted that the RMS error is about the same as for the point
source solution, case number 1. Since the latter involves less degrees of
freedom, it would be preferred from a statistical point of view. The point
source solution does not completely specify a single double couple, hence

the corresponding fault is not necessarily plane. This raises a question

about the effect of the plane fault assumption in source analysis. Another
question concerns the effect of errors (or anomalies) in the data. To investi-
gate these problems we computed synthetic seismograms for the point source
solution (displayed in Fig. VI.1l.1l), and these syntheses formed the basis

of a number of inversion experiments, also summarized in Table VI.1l.1l and

Fig. VI.1.2. From these experiments we conclude that unjustified assumption

of a plane fault may lead to overestimate the fault surface area. The same

is true 1f the data are corrupted by errors (or anomalies). The significance
of the effect depends on the relative excitation factors of the source para-
meters. It should be realized that this effect is not a consequence of the
moment tensor representation; it is to be expected in any method of source
analysis. In the moment tensor formulation however, the plane fault assumption

can be avoided.

D.J. Doornbos
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Fig. VI.1l.1 Synthetic records with P and SH at SRO and ASRO statioms,
for a source corresponding to the solution of case number 1
in Table VI.1l.1l. Record length is 2.5 minutes. Different ampli-
tude scale for different components.
!
.
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Fig. VI.1.2 Fault plane solutions in equal area projections for the cases
in Table VI.1l.1l. ®: Principal axes of moment tensor of degree
zero, x: Major axis of moment tensor of degree two, in cases
where fault constraints were imposed.

- I,
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VI.2 Signal and noise correlations and seismic array configuration

optimalization

One of the subtasks under the NORSAR regional seismology research program

is to devise an optimal sensor layout for a prototype regional seismic array.
This contribution deals with initial attempts at array configuration optimali-
zation based on observations of signal and noise correlations. More specifically,
we outline a strategy for maximizing the gain funtion, which is expressible

in terms of signal and noise correlations only. Possible constraints due to

preferred lobe patterns are not dealt with in this study.

We define signal-to-noise ratio gain from beamforming by

G = )y L ey &Y
1,] 1,]

where pjj 1s the signal correlation between sensors i and j and cy4 the noise

correlation. The correlations pjj and cyj will, in general, be functions of

relative positions of sensors and frequency. In additionm, P13 depends on

the phase type considered.

In the following, we establish models for signal and noise correlations to be

used in maximizing the gain in eq. (1).

Signal and noise correlation measurements

Measurements of signal and noise correlations are made from the l2-element
NORESS array, described in previous semiannual technical summaries. Thus,
predictions on optimum geometries of unimplemented arrays will be based on

the correlation measurements made from the existing NORESS array.

From the five regional events in Table VI.2.1l we have identified Pn, Pg and Lg
phagses, which in turn have been subjected to correlation analysis. Since the
original sampling rate is 20 Hz, a resampling at 100 Hz was necessary to

achieve more accurate time shifts for the correlation computations. The shifts
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were performed with an optimum line-up of correlating peaks in the signals,
and 2 sec of each phase were analyzed. The NORESS array with its 12 elements
offers 66 different sensor combinations resulting in 66 cross-correlation
values for separations ranging from 120 to 1950 m. Correlation values were
averaged into separation intervals of 100 m. Also, averaging is performed
over all available phases of the same kind. The results for the Pn phase

are shown in Fig. VI.2.1 for the five frequency bands given in Table VI.2.2.
Figs. VI.2.2 and VI.2.3 show correlation curves for the Pg and Lg phases,

correspondingly.

The results for the Pn phase show increasing correlation with frequency. This
is due to the high frequency content in the Pn signal; the Pn spectrum peaks

at around 4 Hz. The Pg phase exhibits high correlation values throughout

the range of both frequency and sensor separation. The Lg phase, on the other

hand, correlates poorly for the higher frequencies.

Selected noise records have been subjected to the same kind of correlation
analysis, but now with zero shifts. The noise i{s taken from five time windows,
each consisting of 3 consecutive segments of 4 sec each, immediately preceding
the first arrival onset time for the events in Table VI.2.1l, so averaging

is done over a total of 15 time windows. The results are given in Fig.
V1.2.4.

The standard deviations associated with the curves in Fig. VI.2.4 are fairly
modest, so we must consider the negative cross-correlation values a real
entity. Also, it seems justified to consider the cross-~correlations a function

of interstation separations only, which is of course already implictly assumed
in producing Fig. VI.2.4.

Array configuration optimalization

We are now in a position to contruct otpimal arrays by maximizing the gain ex-
pression given by eq. (1), utilizing the correlation functions derived from
the measurements described above. We are thinking in terms of arrays with 15-20

elements, out of which an optimal subset should be used in the processing of a

B
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particular phase. In fact, the variation of cross-correlations (especially for
the noise) with frequency is so strong that one would expect rather drastically
different geometries to be optimal for different frequencies. So, realizing

the extended range of signal frequencies encountered in regional seismic
phases, the optimalization algorithm must be capable of coming up with a final

geometry that comprises a broad variety of optimal subsets.

So far, the program for optimizing the gain handles one frequency or a 'weighted'
combination of frequencies. Array configuration results based on signal corre-

lations of the Lg wave and the noise are given in Fig. VI.2.5.

The array geometries in Fig. VI.2.5 are generated as follows: The observed
correlation curves are represented by analytical functions which are pleced
together so as to achieve continuous derivatives. Then a starting configuration
is defined and a program which maximizes the gain function by a rapid descent
method due to Fletcher and Powell (1963) finds an optimal configuration for

the number of sensors in question. The suite of geometries in Fig. VI.2.5

are generated by repeated application of the Fletcher-Powell routine, where

the starting geometry for N sensors is defined by the optimal geometry for

N-1 sensors, with one sensor added at the point of gravity for the N-l1 sensors.

S. Mykkeltveit
K. Astebgl

D. Doornbos
E.S. Husebye
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Date

06 Nov 1980
25 Nov 1980
29 Nov 1980
26 Feb 1981
01 Mar 1981

Origin time

14.53.02
02.39.49
20.42.16
17.43.53
05.08.16
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Lo

59.59N
58.40N
51.2°N
60. 30N
62.8°N

Table VI

cation

10.7°E
13.70E
18.59F
15.9©E

6.2°F

«2.1

Magnitude
My,
2.1
2.4
3.5
2.1
2.7

Local events used in this study. The local magnitude My is computed in

Fil
No

wm & W

accordance with Wahlstrom (1978).

ter

Band

Table VI

pass range
(Hz)
0.8-2.8
1.2-3.2
1.6-4.0
2.0-4.8
2.4-4.8

.2.2

Butterworth bandpass filters (3rd order) used in this study.
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VI.3 3-D seismic mapping of the Iceland hot spot

An efficient way of mapping upper mantle structural heterogeneities is that
of using the ACH-method (Aki et al, 1977) for inversion of travel time
observations from a seismic array or similar kinds of seismograph networks.
In the latter cases, the ACH-method has been adapted to handle observations
from large-~scale networks (aperture ~ 10 deg) in which cases the necessary
data easily can be retrieved from the ISC-bulletin tapes (e.g., see
Hovland et al, 1981; Gubbins, 1981). This approach for mapping the extent
of lateral heterogeneities in the upper mantle has proved to be successful

as compared to surface wave dispersion analysis.

In this section we describe an attempt to map seismically the deep structure
beneath Iceland using available P-travel time residuals from the local
seismograph network (see Fig. VI.3.1). This problem is an interesting one
from a tectonic point of view, as evidence for deep-seated roots (down to
300-400 km) of hypothesized hot spots like Iceland and Hawaii have not been
presented to our knowledge. Indeed, recently Anderson (1981) argued that the
depth extent of hot spots should be confined to the uppermost 200 km (litho-
sphere) of the mantle.

Data and method of analysis

The travel time observations used in this inversion experiment were taken
(read) from original seismogram records of the Icelandic network comprising
altogether 39 stations. In the time interval 1974-80 the total number of
events available for analysis was about 160, out of which 61 were found
useful. The event selection criteria imposed were that a minimum of 5 stations
exhibited reasonably clear P~wave recordings, and besides that the azimuth/
distance distribution was reasonably homogeneous. Excessive errors in P-wave
onset readings were attempted avoided by waveform correlation between record-
ing stations for each event subject to analysis. Also, for each event the
network average residual was estimated and subtracted from the individual

observations.
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Travel time anomalies are caused by velocity variations within an a priori
confined volume immediately beneath the station network (see Fig. VI.3.1),
and thus are related to departures from standard earth models. The surface
expression of this volume is marked in Fig. VT7.3.2 and extends to a depth
of 375 km. Also, the velocity structure is represented by a smooth cubic
interpolatin between slowness values on a three-dimensional grid of 4x6x6
knots. This means that the upper mantle beneath the seismograph network

is subdivided into 4 levels (0-75 km, 75-175 km, 175-275 km, 275-375 km)
with slowness estimates at individual grids of 6x6 knots). Now the basis
for linear inversion of travel time data is Fermat's principle stating that
the variation in the travel time caused by small change in the ray path

is zero to the first order. From this we may formulate a linearized relation-

ship between travel time residuals (ATij) and velocity variations, namely:

By
ATij = f §s dg
Aj
where 8 = 1/v is slowness or reciprocal velocity in s km~1. Aj is the j-th
receiver while By is the i-th source. This equation constitutes the very
basis for linearized inversion of observed travel time residuals (the ACH-
method and variants hereof) and for details here in this particular case,

reference is made to Tryggvason (1981).

The validity of the linearity assumption above is based on the assumption
that the non-linear terms are negligible, namely, the contributions due to
change in velocity along the initial ray path and the effect of the change
in ray path in the initial medium as detailed by Thomson and Gubbins (1981).

de did indeed check the effects of these non-linear terms and found them
ignorable.

Results

The anomaly maps of Figs. VI.3.2 represent the estimated P-wave fractional

velocity anomalies for Iceland and adjacent areas. For details on the particular
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'standard earth' model used, resolution and standard errors of the estimated
velocity anomalies, etc., reference 1s made to Tryggvason (1981). It suffices
to remark that for knots with resolution less than 0.4 and/or standard errors
larger than the anomaly itself the corresponding knot fractional velocity

estimates are not considered significant.

In layer 1 (Fig. VI.3.2a), which represents the uppermost 75 km, a broad and
dominant low velocity zone is extending from the Tjdrnes fracture zone (66.5°N,
16-19°W) north of Iceland, southward to the Krafla area (65.5°N, 179W) and

then west-southwestward in direction to the Snzfellsnes area (65°N, 19°W).

This low coincides with a major part of the neovolcanic zone in northern and
central Iceland together with late Quaternary and early Tertiary areas west of
it. Pronounced low velocity values are tied to the Tjdrnes shearing zone and

the active Krafla volcanic area. Offshore there are only few significant anomalies
and all of them represent a continuation of the pronounced high velocity regions
in the southeastern and northwestern parts of the country. The grid points
within Iceland itself are well resolved, that is, the resolution is around 80%
and up to 902 in southern Iceland, which reflects a denser station network
there. The standard error estimates for these most significant grid point

values are arcund 1% relative velocity change. The capital letters A-A' and
B-B' together with the heavy arrows indicate vertical cross-sections through

the model box (Fig. VI.3.2).

In layer 2 (Fig. VI.3.2b), which ranges from 75 to 175 km depth, the low
velocity zone is shifted southeastward compared to layer 1 and with the strongest
anomalies south of Reykjanes (Keflavik), beneath the Hekla area (659N, 16°W)

and northeast of Kverkfjsll. A continuation of the high in the northwestern

part of the country is obvious. In addition, two highs are prominent, namely,
south of Iceland and northeast of Iceland. These areas are poorly sampled in

layer 1, so a comparison between the two layers is not possible there.

For layer 3 (Fig. VI.3.2c), depth range 175-275 km, somewhat different features
appear compared to the two uppermost layers. A significant low is covering an

area south of the Tjérnes fracture zone and extending westward to the southwest
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of the Kolbeinsey ridge. Another low velocity zone, but a weaker one, is under-
neath central and southwest Iceland. The resolution values are even higher here
than in layer two, most of them around 0.9 and with accompanying standard

errors down to 0.8%7.

Layer 4 (Fig. VI.3.2d) covering the depth range of 275-375 km, is marked by
a prominent velocity low beneath central Iceland. This is a relatively broad
area with maximal east-west and north-south extension around 300 and 200 km
respectively. Tne resolution and standard error estimates are about the same
as for layer 3. For the lower layers most of the edge points are sufficiently
well resolved. Significant anomaly contours can therefore be drawn quite to

the edge of the box, as is the case for the highs around the country in layers
3 and 4.

We made two vertical cross-sections (Figs. VI.3.2) of the above four-layer
anomaly patterns. The sections visualize the main lows and highs of all four
layers, indicating an anomalous mantle beneath Iceland. Below circa 250 km
depth of central Iceland a dominant low velocity zone might indicate a mantle
plume or a so-called hot spot. Another strong low in the uppermost 70-80 km is
beneath almost the whole of Iceland except for the periphery of the oldest
rocks mainly in the SE and NW parts of the country. A broad 'transition zone'
of relatively low velocities including a few strong low velocity pockets (see

layers 2,3 of the anomaly maps) is clearly connecting the two major lows.

Discussion

To our knowledge, this is the very first time a comprehensive 2 D mapping

of the Icelandic rift zone has been undertaken. Of particular interest is

that the surface rift manifestations are reflected at depths of the order

of 350 km as discussed by Tryggvason (1981). It is here tempting to draw

a parallel to the NORSAR siting area which coincides with an ancient (Permian)
aborted rift zone. Also here there are strong indications that the relatively

large time and amplitude anomalies observed are caused by heterogeneities of
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a predominantly vertical extent (e.g., see Christoffersson and Husebye, 1979;
Haddon and Husebye, 1978; Thomson and Gubbins, 1982; and Troitskiy et al,
1981).

K. Tryggvason
E.S. Husebye
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Vi.4 Mantle heterogeneities beneath Fennoscandia

As part of NORSAR's comprehensive program for seismological mapping of upper
mantle heterogeneities, travel time observations from the Fennoscandian
network (Fig. VI.4.1) have been subjected to a 3-D inversion analysis
similar to that described in Section VI.3. The region in question is
interesting in the sense that the Baltic Shield constitutes its dominant
tectonic feature as shown in Fig. VI.4.2. We note in passing that NORSAR
scientists and colleagues in the past have undertaken detailed studies
of parts of this region, e.g., see King and Calcagnile (1975), Aki et al
(1977), England et al (1978), Haddon and Husebye (1978), Christoffersson
and Husebye (1979), Calcagnile and Panza (1978), Sacks et al (1978),
Troitskiy et al (1981) and Thomson and Gubbins (1982).

Data analysis and results

The observations in terms of P-wave travel time residuals were taken from
the ISC bulletin tapes for the period 1964~77 and thus permitted us to in-
clude stations no longer operational like KRK, GOT & KLS (Fig. VI.4.1). The
motivation for this was that the minimum size of structural heterogeneities
to be resolved is a function of the station interspacing within the network.
In this respect the Fennoscandian network is much coarser than that of
Iceland (Section VI.3) and not at all comparable to that of NORSAR itself
(Troitskiy et al, 1981). At a later stage, however, we will use data from
the new, southern Scandinavian network, which comprises some 25 new stations

with an interspaeing of around 50-75 km.

The Fennoscandian inversion results in terms of percentage seismic velocity
anomalies are displayed in Fig. VI.4.2. The standard earth reference model
used was that of Dziewonskl et al (1975) for continental areas. The esti-
mated standard errors were of the order of 1 per cent except for poorly
resolved (resolution less than 0.5) peripheral nodes which are specially
marked in Fig. VI.4.2. In the following we will comment on the velocity

anomaly patterns at the respective levels.
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Level 1 (0-100 km). The anomaly pattern here is dominated by a velocity high
over the central parts of Fennoscandia, the Bothnian Bay. Otherwise, there 1is
indication of a negative anomaly straddling the Barents Sea to the northwest.
This 1s an intracontinental sedimentary basin whose crustal structure is found
to be considerably different from that of the Baltic Shield (e.g., see Levshin
and Berteussen, 1978; and Bungum et al, 1981). Unfortunately, the resolution
was very poor in the southern part of the network area, so it was not feasible
to test whether the various tectonic provinces adjacent to the Baltic Shield

(Fig. VI.4.x) also have a seismic manifestation.

Level 2 (100-300 km). The anomaly pattern here 1s rather similar to that of
level 1 with velocity lows in the Caledonides of western and northern Norway.
The dominant velocity high coincides roughly with the areal extent of the Baltic
Shield and thus confirms long-standing hypotheses that such tectonic provinces
constitute deep-seated, relatively homogeneous parts of the upper mantle in

analogy with the tectonosphere concept.

Level 3 (300-500 km). The characteristic features here are weak anomalies

and no similarity to those at level 2. In a plate tectonic context we may

take levels 1 and 2 to constitute the lithosphere which in turn is decoupled
from the underlying asthenosphere of level 3. Sacks et al (1978) reported
indications of a discontinuity beneath the Bothnian Bay at a depth of 230 km
which tentatively has been interpreted as the lithosphere/asthenosphere boundary.
Likewise, Calcagnile (1982) on the basis of Rayleigh wave dispersion analysis
finds thact tnc central parts of the Baltic Shield exhibit a considerably thicker
lithosphere than the adjacent areas to the west.

Level 4 (500-600 km). Also this layer appears remarkably homogeneous, although
less so than layer 3. The very existence of heterogeneities in this part of

the upper mantle is probably related to geochemical/geothermal anomalies as-
soclated with the 650 km discontinuity. We remark that heterogeneities at

depths greater than 600 km may be 'projected' into layer 4.

e AR A RS, -5 i -




.

- 52 -

Discussion

The essential result obtained is that the surface expression of the Baltic
Shield has a relatively high seismic velocity counterpart some 300 km down
in the upper mantle. Quantitatively, this explains some characteristic
features of Fennoscandian seismograph recordings, namely, relatively large
amplitude P-wave recordings and ‘early' arrival times for events in western
Russia and central Asia. In a future study we will attempt to quantify

wave propagation through 3-D media of the above kind also in terms of

an associlated Q-structure.

E.S. Husebye
J. Hovland
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Fig. VI.4.2

(a) Velocity perturbations in per cent for Level 1 (0-100 km).
Areas of high and low velocities are indicated by captial letters
H and L. (b) Velocity perturbations in per cent for Level 2
(100-300 km). (c) Velocity perturbations in per cent for

Level 3 (300-500 km). (d) Velocity perturbations in per cent
for Level 4 (500-600 km).
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VI.5 Upper mantle heterogeneities beneath Eastern Europe

Travel time residuals for east European seismograph stations (see Fig. VI.5.1)
as reported to the ISC have been used in a study of upper mantle heterogeneities
beneath eastern Europe. Standard 3-D inversion procedures were used in the data
analysis and the results obtained are displayed in Fig. VI.5.2. In the next
section these results will be discussed in some detail, and also a comparison
will be made with similar results reported for central Europe (Hovland et al,

1981) and Greece and adjacent areas (Hovland and Husebye, 1981).

3-D inversion results for eastern Europe

The east European inversion results in terms of percentage seismic velocity
anomalies are displayed Fig. VI.5.2. The standard earth reference model

used was that of Dziewonski et al (1975) for continental regions. The estimated
standard errors were of the order of 0.6 per cent except for poorly resolved
peripheral nodes (resolution less than 0.5). For details see Table VI.S.1.

In the following we will comment on the velocity anomaly patterns at the re-

spective levels.

Level 1 (0-100 km). The anomaly pattern is dominated by velocity lows over
the Pannonian Basin and western Turkey, both of which are characterized by
high heat flows. Most of the peripheral nodes are poorly resolved but in this
respect the velocity high near the northwest corner is exceptional. From

its estimated resolution (0.7) and standard error (0.7 per cent) this node
should be rated significant, but its estimated bias error (Thomson and Gubbins,

1982) is of the order of 3 per cent.

Level 2 (100-300 km). The areas of velocity lows are even more dominant
at this level, and there is a certain overlap with level 1 results for the
Pannonian Basin and the western Turkey/Aegean Sea. The velocity highs are
found towards west and north. An axiom of modern plate tectonic hypothesis

18 a lithosphere/asthenosphere decoupling which in this particular case should
imply rather pronounced anomaly pattern differences between the level 1 and 2
results. This clearly does not apply to areas of pronounced velocity lows

like the Pannonian Basin and the Aegean Sea. However, both of these areas

are hypothesized to be associated with upwelling asthenospheric material
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(for discussion here, see Hovland and Husebye, 1981) and thus a level 1/2

coupling is indeed expected for these two areas.

Level 3 (300-500 km). Relative to level 2 the anomaly pattern here changes

rather abruptly with a pronounced velocity high now in the Aegean Sea, while

areas of velocity lows are of rather modest extents.

Level 4 (500-600 km). The anomaly pattern of level 3 is essentially retained

here with relatively pronounced anomalies in comparison to those observed for

Fennoscandia for these two levels.

Discussion

The station distribution within the eastern European seismograph network
(as defined in Fig. VI.5.1) is skew in the sense that most stations are
found in the NW and SE quandrants. This in turn is reflected in relatively
poorly resolved nodes in the NE and SW quadrants as demonstrated in Table
VI.5.1. Notwithstanding this kind of problems, the stable tectonic

units of the region under investigation, namely, the Ukranian Shield and
the East European Platform, correspond to those areas which exhibit modest

velocity anomalies at the four levels of Fig. VI.5.2.

The eastern European region as defined in Fig. VI.5.x overlaps partly with
that of Central Europe (Hovland et al, 1981) and southeast Europe (Hovland
and Husebye, 1981). Although different data sets are used, the anomaly

patterns of the various studies correlate well in the overlapping areas

{not unexpected).

An intriguing aspect of the results presented is the existence also in the
asthenosphere of strong velocity anomalies. This feature is less pronounced
for platform and shield areas, which exhibit relatively very good P-wave
propagation regimes in terms of early phase arrivals with relatively

strong high-frequency signal amplitudes. This and assoclated topics of 3-D
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seismic modelling of the lithosphere/asthenosphere will be the subject of
future NORSAR research studies.

J. Hovland
E.S. Husebye
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- 62 ~

V1.6 Signal detection using P-wave envelope representation

The beamforming technique conventionally used for detection processing at
seismic arrays such as NORSAR is critically dependent uporn signal coherency
across the array for good performance. Earlier studies, e.g., Ringdal et al
(1975) have shown that in numerous instances, particularly for regional

events and events with high dominant signal frequency, signal coherency

is generally poor across the NORSAR array. A so-called 'incoherent' beam-
forming detector, which essentially sums the envelopes of the filtered

sensor traces, has shown superior performance compared to standard beamforming
in such cases, and such a detector has in fact been in operation at NORSAR
since 1971.

A study has been undertaken (Nysater, 198l1) to analyze in detail the per-
formance of envelope detectors on NORSAR data, both as a function of en-
velope representation technique and filter setting. Two representation

techniques have been investigated:

(a) Using a sliding short term rectified average (STA), based on a window
of 1.5 seconds of the filtered signal of each trace;

(b) Using a squared Hilbert transform of the filtered signal of each trace.

An {llustration of these envelope representations is given in Fig. VI.6.1.
The Hilbert transform provides a theoretical envelope to the signal, whereas
the STA representation is only approximate. On the other hand, the STA envelope

is faster to compute,

The actual detection algorithm for each of the two representations has con-
sisted of

(1) Prefiltering of each of 7 sensor traces (one per subarray) with a
recursive Butterworth bandpass filter

(11) Computing the appropriate envelope of each trace

(111) Summing the envelopes with 64 sets of time delays (as in the NORSAR
on-line system)

(iv) Applying a standard linear STA/LTA detector.
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The subsequent analysis steps were as follows:

1. Evaluate the false alarm rate as a function of SNR by analyzing
selected noise segments using both detectors.

2. Determine comparable thresholds for each detector (i.e., set a
threshold such that the number of false alarms were similar).

3. Compare the signal-to-noise ratio of each of a set of 123 events

for the two detectors, adjusted for the threshold differences.

The 123 events were based upon reportings from the full 42 element NORSAR

SP array. With a false alarm rate comparable to that of the NORSAR on-line
envelope detector, 115 and 112 of these events were detected by the Hilbert
and STA envelope detectors, respectively. (Note that these detectors were
based on 7 SP channels only.) Average SNR (adjusted for threshold differences)
were 14.43 and 14.24 dB respectively, thus giving a very marginal improvement
for the Hilbert algorithm relative to STA envelopes (see Fig. V1.6.2). This

is in some contrast to the results by Wen-Wu-Chen (1974), who reported a

significant improvement using Hilbert transforms relative to STA envelopes.

The effect of filter setting was investigated using a subset of 22 events,
and applying filters of 2.0-4.0 Hz, 2.4-4.4 Hz and 2.8-4.8 Hz in addition to
the standard 1.6-3.6 Hz filter used by the NORSAR on-line envelope beam
detector. The results are summarized in Table VI.6.1, which shows that the
filter band 2.0-4.0 Hz is the best overall, both with respect to the number

of detections and the average SNR. Again, the difference between the two
detectors is slight.

In summary, we have thus found:

1. An envelope beam detector based on the Hilbert transform is only

slightly better than the computationally simpler envelope detector
based on a sliding STA window.

a9
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2, A filter setting of 2.0-4.0 Hz appears to be near the optimum choice
for overall detection of regional events, although individual variations

in signal frequency may cause other bands to be better in some cases.

3. The performance of a 7 element array (one instrument from each subarray)
is almost equal to that of the 42 element NORSAR array for regional
events. This shows that event gains at the subarray beam level are
quite modest for conventional beamforming of regional signals recorded
at NORSAR.

A. Nysater
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Fthuency 1.6-3.6 Hz 2.0"1‘00 Hz 2. 4~4.4 Hz 2.8-4.8 Hz
Bands S-E STA S-E STA S-E STA S~E STA

No. of detected 19 19 22 22 19 16 17 16
events '

Average SNR 19.13 18.58 20.90 20.14 20.78 19.69 19.70 18.45
SNR difference 0.55 0.76 1.09 1.25

Table VI.6.1

Comparison of detection performance of 22 regional events reported by NORSAR
for two envelope detectors: Square envelope Hilbert transform (S-E) and sliding
STA window envelopes (STA).
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Hilbert type envelope (top) and STA type envelope (bottom)
of a seismic signal.
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Fig. V1.6.2 Max. SNR from the square envelope detector versus max. SNR from
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VI.7 Investigation of signal focusing effects at NORSAR for events near
the Casplan Sea

A major feature of seismic signals recorded at the NORSAR array is the large
amplitude variations seen between individual instruments for any given event
(Berteussen and Husebye, 1974). The amplitudes typically differ by about a
factor of 10 between the 'best' and 'worst' instrument, corresponding to about
1.0 mp unit variation across the 100 km NORSAR aperture. The amplitude patterns
are repeatable for any given source regions, but may change considerably with
only a few hundred kilometers shift in epicenter. Thus, any one of the 22
original NORSAR subarrays is the 'best' one for at least one source region,

and the 'worst' one for at least one other region.

For the Casplan Sea region, subarray 02B has the highest signal amplitudes.

Even within this subarray, which has an aperture of only 10 km, there is a

considerable variability in amplitudes, as seen in Fig. VI.7.1 for an event

near Azgir, USSR. A project has been undertaken to investigate these signal

focusing effects in more detail, using an experimental set of six sensors

deployed near the instrument 02B0S5, which has the highest amplitudes for

this source area (Fig. VI.7.2). The aims of this deployment are the following:

- Take advantage of the focusing effects to improve event detectability
for this region

- Investigate signal spectra at high frequencies (the data will be sampled
at 40 Hz with an analog cutoff filter at 12.5 Hz, thus giving improved
spectral recordings at high frequencies compared to standard NORSAR SP
channels)

- Monitor low magnitude earthquake activity in the Caspian Sea area.
The experimental array is expected to become operational early 1982.
F. Ringdal

P.W. Larsen
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Fig. VI.7.1 Illustration of the amplitude variability within NORSAR subarray
02B for the P phase from an event near Azgir, USSR, Oct 14, 1977.
The traces have been filtered with a 2.4-4.4 Hz bandpass filter,
and the dota represent the positions of the 6 SP instruments in the
subarray. (Subarray diameter is about 10 km.) There is a general
trend of increasing amplitudes from south to north, with the
amplitude at the northernmost instrument (02B0S) being larger
by a factor of 4 compared to the instruments furthest south.




Fig. VI. 7.2 NORSAR subarray 02B. Circles denote current NORSAR SP instruments,
while triangles show the locations of six planned experimental

SP gensors.




A s v 7 2 n

-71 ~

VI.8 Dynamic ray-tracing in complex three-dimensional models

In the last years, 3~D seismic modelling has become a rapidly growing
branch of modern geophysical research. Within this area a very important
tool is the seismic ray-tracing methods, which have recently been extended

to include even dynamic properties of the wave field.

We have developed a rather general 3-D ray-tracing system suitable for
application to various kinds of seismic modelling problems. (For details
see Gjgystdal, 1978A,B; Gjeystdal, 1979; Gjeystdal & Ursin, 1981;
Gjeystdal et al, 1981; Reinhardsen, 1981.)

One of the major problems considered is how to represent a 3-D geological
model mathematically. The various selsmic reflectors are divided into a
system of bicubic spline surfaces. A special kind of 'logic' has been
developed in order to obtain a proper connection between the various

spline interfaces, permitting an unambiguous tracing of any ray through the
model, provided the ray has specified direction in the start point. The
layers between the interfaces may have any velocity variation, provided

the velocity function is continuous and has continuous 1st and 2nd deriva-
tives everywhere in each layer.

Particularly in the last 5 years there have been a number of works on the
problem of extending the ray-tracing procedures to include parameters in
addition to those just mentioned. For example, Hubral and Krey have pub-
lished several papers on wavefront curvature calculations, and last year
Cerveny and Hron presented an excellent theoretical work on the ray series
method and dynamic ray-tracing in 3-D inhomogeneous media. (For reference,

see f.ex. Hubral and Krey, 1980; and Cerveny and Hron, 1980.) We have included
these methods in a 3-D ray-tracing system. A new dimension is introduced into
such a dynamic ray-tracing system in that we are now able to calculate wave-

front curvatures and amplitudes at any point of a ray (see Fig. VI.8.1). The

‘dynamic' procedures are able to make proper use of the parameters of the

medium sampled by the ray, such as velocity gradients, interface curvatures,
etc., which were just ignored in 'conventional' ray-tracing.
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In mathematical terms, the wavefront is represented by a 2 by 2 wavefront
curvature matrix, which essentially contains the wavefront curvatures in
two principal directions perpendicular to each other. There now exist
theoretical procedures for calculation of the change in the wavefront
curvature matrix on refraction or reflection at an interface. In order

to calculate the change in the wavefront curvature matrix and amplitude
coefficients when tracing the ray through a continuous part of the medium,
we have to solve a set of differential equations. These are non~linear
equations that must generally be solved by numerical approximations. For
general velocity media, we have used the so—called Admas P-E-C-E method
in order to solve the equations (Predict-Evaluate-Correct-Evaluate). For
media with constant velocity or constant velocity gradient, we can obtain
analytical solutions of the equations, of course making the process con-
siderably more efficient.

We have developed a special search procedure in order to find ray paths
connecting a given source- and receiver-position in a 3-D model. It is based
on the 'shooting method', that is, we are starting in the shot point with a
certain initial direction of the ray, and the ray 1s traced through the model
until a specified 'receiver interface' has been reached. The initial ray
direction is then updated and a second ray is traced through the model.

The procedure is then repeated until the ray arrives sufficiently close to
the specified receiver point. The procedure is described in detail in
Gjeystdal (1978A,B); here we shall restrict ourselves to stating some basic
properties of the method. The procedure takes advantage of a 'receiver line’
running through the receiver point. The search constitutes a 'curve crawling
process' along this line, using gradient calculations for updating the ray
direction at each iteration step. The procedure is especially efficient when
a number of receivers are distributed along a line (or continuous curve),

as 18 usually the case in geophysical exploration. In addition, the procedure
is designed to pick up the various branches of the travel time function

if such branches exist, thus being able to determine all ray paths con-

necting source and receiver in a complex 3-D model.
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It should also be mentioned that during this search procedure, no dynamic
parameters (i.e., wavefront curvature, amplitude, etc.) are calculated.

Such calculations are carried out only for the resulting ray paths. These
rays are traced through the medium once more, and the necessary integrations

are performed in order to determine the parameters wanted.

A simple example is shown in Fig. VI.8.2. Fig. VI.8.2a shows a 3-D model,
consisting of 5 interfaces. The selsmic velocities in each layer are
generally varying continuously with space coordinates. Fig. VI.8.2b shows
a vertical cross section through the model along the line A-B in Fig.
VI.8.2a, together with normal incidence rays for this line projected into
the cross section. Because of the 3-D nature of the problem the ray paths
will generally not intersect the interfaces in this cross section. Fig.
V1.8.2c shows the curresponding zero offset seismic section. Note that
each amplitude has been scaled proportional to the travel time, in order

to compensate for the large dynamic range of the various arrivals.

H. Gjﬂystdal
J.E. Reinhardsen
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Fig. VI.8.1 Dynamic ray-tracing in 3D models - schematic illustration.
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VI.9 High resolution group velocity analysis AR-method

McCowan (1978) introduces a new high resolution method for measurement of
group velocities of seismic surface waves. McCowan's method is based on the
instantaneous frequency estimator of Griffiths (1975) which was designed to
estimate the frequency content of digital signals with a narrow band and
rapidly time varying spectrum. Griffiths and Prieto-Diaz (1977) used this new
method, called the adaptive autoregressive (AR) method of data modelling,

on seismic data and demonstrated that when conventional methods provide a poor

resolution, a high resolution 1s still achievable by this technique.

The adaptive AR method is most useful for analysis of>compact waveforms

recorded at regional distances from a seismic source. It will be used for
obtaining group velocities in the Middle East using data from the Seismic
Research Observatories (SRO) in this region. In this report the AR method

is briefly reviewed and a test case on synthetic data presented.

The basic problem is to find group arrival times on a seismogram generated
by a near distance seismic source. The group arrival time at a frequency wy is
the time of maximum energy at frequencies in the vicinity of w,, and is found

by spectral estimations.
Denote a set of N equally spaced data points in the time series by
x(k), k = 0’1,2’0‘0,N_1

In the traditional methods (see for example Dziewonski and Hales, 1972), a
window (say a Gaussian one) is defined appropriately, convolved with data
at regular intervals and each time the amplitude spectrum is calculated

by a Fourier transform. The result of this process is then contour plotted

and the group arrival times picked from the contours.

In the adaptive AR method, the window (or filter) depends on past values of
the signal and is continuously updated as new values become available. The
updatation is performed by a simple algorithm after Widrow and Hoff (1960)
which 1s defined as follows:
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ag(k+l) = ag(k)+ue(k)x(k-2) (6))

in which the value of the filter coefficient at time (k+l), i.e., ag(k+l),
is found from the previous filter and data values. The adaptive step size u
1s a parameter which controls the convergence of the scheme and is related

to the filter length L and filter learning constant a by:

a
=

¢

2
Loy

where o§ 1s the input power level. The time constant of convergence for the
algorithm is given by:

-1
T = 3
¢n(l-a/L)

e(k) in (1) is the filter output at time k and is defined by

L
e(k) = x(k)- ) ag(k)x(k-2) (4)
g=1

and finally the spectral estimation giving the group arrival time is

L
S(u,k) = [1- § a (ke Jut|=2 (5)
=1

(see Griffiths and Prieto-Diaz, 1977; McCowan, 1978).

It follows from (3) that the filter constants L and a determine the convergence

of the algorithm. The convergence of the adaptive AR method is discussed by
Griffiths (1975), Griffiths and Prieto-Diaz (1977), and McCowan (1978) where
they suggest that values of between (10-20) and (0.1~2.0) should be selected
for L and a respectively.
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In summary, the filter parameters L and a must be selected appropriately,
filter coefficlents at discrete times ky, kp,...,k,; calculated using (1
and (4). The spectral estimates are then calculated using (5), contour
plotted and group arrival times picked from the contours. If the instru-
ment response is removed from the data prior to filtering, the contours

can be calibrated to give the group velocities directly.

The adaptive AR method is capable of tracking instantaneous frequencies
(Griffith, 1975). This very important feature can be demonstrated by apply-
ing the method to a pure sine wave. Take 100 samples from a 0.05 Hz sine
wave (sampled at a rate of one sample per second), and define filter para-

meters as follows:

Filter length: L=12

Filter learning constant: a = 0.20

By using (3) the adaptive time constant will be

-1
Te __________= 59,50 seconds.
gn(l-a/L)

The filter output calculated from (4) is plotted in Fig. VI.9.la. As expected,
the filter output tends to zero at times greater than the adaptive time con-
stant (59.5 seconds), i.e., in this case the present values of the sine wave
can be predicted from its past values without any error. The adaptive AR
spectral estimates calculated at three different times (20, 60 and 90 seconds)
are shown in Fig. VI.9.1b-1d. In Fig. VI.9.1lb, the calculation is performed

at a time before the adaptive time constant, and there is no spectral peak

at 0.05 Hz. In Fig. VI.9.1lc, at a time corresponding to a full time constant,
a side lobe is still present though its amplitude 1s more than 12 dB below the
main 0.05 Hz signal amplitude. In Fig. VI.9.1ld, at a time greater than the full
time constant, the side lobes fall more than 40 dB below the main signal level
and thus the main signal 'is easily identified.
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In conclusion the adapative AR method is shown to work as expected on
synthetic data. The next step is to select seismic events at regional
distances from SRO stations and apply this method to find group velocities
for many profiles in the Middle East.

I. Asudeh
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